Volume 5, Issue 5, September 2019, Page: 48-51
Study on Dissociation Equilibria of Eberconazole Nitrate in Micellar Media by Spectrophotometry
Marothu Vamsi Krishna, Alliance Institute of Advanced Pharmaceutical and Health Sciences, Hyderabad, India
Salah Ali Mahgoub Idris, Chemistry Department, Faculty of Science, Tobruk University, Tobruk, Libya
G. Madhavi, Alliance Institute of Advanced Pharmaceutical and Health Sciences, Hyderabad, India
B. Jalachandra Reddy, Alliance Institute of Advanced Pharmaceutical and Health Sciences, Hyderabad, India
M. Sowhardhra, Alliance Institute of Advanced Pharmaceutical and Health Sciences, Hyderabad, India
D. Gowri Sankar, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
Received: Aug. 15, 2019;       Accepted: Sep. 9, 2019;       Published: Oct. 11, 2019
DOI: 10.11648/j.ijpc.20190505.11      View  47      Downloads  20
Abstract
The equilibrium dissociation constant (KD) is the basic parameter to evaluate the binding property of the chemical structure of compounds. Thus, a variety of analytical methods have been established to determine the KD values, including radioligand binding assay, surface plasmon resonance method, fluorescence energy resonance transfer method, affinity chromatography, and isothermal titration calorimetry. Here we present a detailed overview of the dissociation equilibria of Eberconazole nitrate (EBZ) in homogeneous and heterogeneous systems, focusing primarily on methods that are based on spectrophotometrically of the dissociation reaction. The Dissociation equilibria of Eberconazole nitrate (EBZ) in homogeneous and heterogeneous systems were studied spectrophotometrically in Britton-Robinson’s (BR) buffer at 25°C. Acidity constant of EBZ in BR buffer was found to be 9.5. The effect of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micellar concentration (cmc) on acid – base properties of EBZ were also examined. The results revealed a shift of pKa values in micellar media comparing to the values obtained in BR buffer. These shifts in pKa values are more in cationic and anionic micellar media compared with that of non-ionic. The observed differences in pKa values between micellar media and BR buffer solution ranged between -6.0 to -2.0 units. The micellar-mediated pKa shifts can be attributed to the differences between the mean intrinsic solvent properties of the interfacial and bulk phases, with an additional contribution from the electrostatic micellar surface potential in the case of the charged aqueous micellar solutions.
Keywords
Dissociation Equilibria, Eberconazole Nitrate, Micellar Media, Spectrophotometry
To cite this article
Marothu Vamsi Krishna, Salah Ali Mahgoub Idris, G. Madhavi, B. Jalachandra Reddy, M. Sowhardhra, D. Gowri Sankar, Study on Dissociation Equilibria of Eberconazole Nitrate in Micellar Media by Spectrophotometry, International Journal of Pharmacy and Chemistry. Vol. 5, No. 5, 2019, pp. 48-51. doi: 10.11648/j.ijpc.20190505.11
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Q. Sun, M. Du, X. Li, X. Guo, A. Liu, G. Chen, L. Yang, Chemical Engineering Science, 206 (2019) 1-9.
[2]
I. N. Tsimpanogiannis, V. K. Michalis, I. G. Economou, Fluid Phase Equilibria, 489 (2019) 30-40.
[3]
M. Meloun, A. Čápová, L. Pilařová, T. Pekárek, Journal of Pharmaceutical and Biomedical Analysis, 158 (2018) 236-246.
[4]
I. T. Ahmed, E. S. Soliman, A. A. A. Boraei, Annali di Chimica, 94 (2004) 847-856.
[5]
A. Safavi, H. Abdollahi, Talanta, 53 (2001) 1001-1007.
[6]
C. Ràfols, J. L. Beltrán, M. Rosés, E. Bosch, Journal of Electroanalytical Chemistry, 848 (2019) 113318.
[7]
J. L. Beltra´n, N. Sanli, G. Fonrodona, D. Barro´n, G. O. zkanb, J. Barbosa, Anal. Chim. Acta, 484 (2003) 253–264.
[8]
F. Z. Erdemgil, S. Anli, N. Anli, G. O. zkan, J. Barbosa, J. Guiteras, J. L. Beltra´n, Talanta, 72 (2007) 489-496.
[9]
V. Evagelou, A. Tsantili-Kakoulidou, M. Koupparis, J. Pharm. Biomed. Anal., 31 (2003) 1119-1128.
[10]
E. Jime´nez-Lozano, I. Marque´s, D. Barro´n, J. L. Beltra´n, J. Barbosa, Anal. Chim. Acta., 464 (2002) 37-45.
[11]
R. I. Allen, K. J. Box, J. E. A. Comer, C. Peake, K. Y. Tam, J. Pharm. Biomed. Anal., 17 (1998) 699–712.
[12]
M. Andrasi, P. Buglyo, L. Zekany, A. Gaspar, J. Pharm. Biomed. Anal., 44 (2007) 1040-1047.
[13]
W. L. Hinze, Solution Chemistry of Surfactants, Plenum Press, New York, 1979.
[14]
P. Ezzio, P. Edmondo, Anal. Chim. Acta, 117 (1980) 403-406.
[15]
D. Myers, Surfactant Science and Technology, VCH Publishers, New York, 1988.
[16]
E. Pellezzeti, E. Pramauro, Anal. Chim. Acta., 128 (1981) 273-275.
[17]
M. J. Rosen, Surfactants and Interfacial Phenomena, Wiley, New York, 1978.
[18]
G. L. McIntire, Crit. Rev. Anal. Chem., 21 (1990) 257-278.
[19]
C. J. Drummond, F. Grieser, T. W. Healy, J. Chem. Soc., Faraday Trans, I 85 (1989) 521-535.
[20]
R. K. Dutta, R. Chowdhury, S. N. Bhat, J. Chem. Soc., Faraday Trans, 91 (1995) 681-686.
[21]
Z. Yuanqin, L. Fan, L. Xiaoyan, L. Jing, Talanta, 56 (2002) 705-710.
[22]
N. Pourreza, S. Rastegarzadeh, J. Chem. Eng. Data, 50 (2005) 206-210.
[23]
M. Khamis, B. Bulos, F. Jumean, A. Manassra, M. Dakiky, Dyes Pigments, 66 (2005) 179-183.
[24]
M. G. Khaledi, A. H. Rodgers, Anal. Chim. Acta., 239 (1990) 121-128.
[25]
A. Rodr´ıguez, E. Junquera, P. Del Burgo, E. Aicart, J. Colloid Interf. Sci., 269 (2004) 476-483.
[26]
B. Castro, P. Gameiro, J. L. F. C. Lima, C. Matos, S. Reis, Mater. Sci. Eng. C, 18 (2001) 71-78.
[27]
M. Szymula, S. Radzki, Colloid Surf. B., 35 (2004) 249-257.
[28]
P. V. Jaiswal, V. S. Ijeri, A. K. Srivastava, J. Incl. Phenom. Macro Chem., 49 (2004) 219-224.
[29]
M. Szymula, J. N. Michalek, Colloid Polym. Sci., 282 (2003) 1142-1148.
[30]
X. L. Wen, Y. H. Jia, Z. L. Liu, Talanta, 50 (1999) 1027-1033.
[31]
P. V. Jaiswal, V. S. Ijeri, A. K. Srivastava, Anal. Chim. Acta, 441 (2001) 201-206.
[32]
P. V. Jaiswal, V. S. Ijeri, A. K. Srivastava, Bull. Chem. Soc. Jpn, 74 (2001) 2053-2057.
[33]
S. C. Sweetman, Martindale The Complete Drug Reference, Thirty sixth ed., Pharmaceutical Press, London, 2009.
[34]
M. J. Barbanoj, R. Antonijoan, C. Garcia-Gea, M. Puntes, I. Gich, F. Jane, Methods Find Exp Clin Pharmacol., 27 (2005) 227-234.
[35]
J. M. Torres-Rodriguez, R. Mendez, O. L. Jodra, Y. Morera, M. Espasa, T. Jimenez, C. Lagunas, Antimicrob. Agents Chemother, 43 (1999) 1258-1259.
[36]
W. Ma, L. Yang, L. He, Journal of Pharmaceutical Analysis, 8 (2018) 147-152.
Browse journals by subject