Volume 6, Issue 4, July 2020, Page: 41-53
Pharmacognostic, Chemical and Anti-inflammatory Activity Study of Two Varieties of Tropaeolum tuberosum (Ruiz & Pav.) Kuntze (Tropaeolaceae)
Jiménez-Heinert María Elena, Faculty of Chemical Sciences, University of Guayaquil, Guayaquil, Ecuador
Gutiérrez-Gaitén Yamilet Irene, Pharmacy and Food Institute, University of Havana, Havana, Cuba
Chóez-Guaranda Iván, Biotechnological Research Center of Ecuador, Polytechnic Superior School of the Littoral, Guayaquil, Ecuador
Miranda-Martínez Migdalia, Biotechnological Research Center of Ecuador, Polytechnic Superior School of the Littoral, Guayaquil, Ecuador; Natural Sciences and Mathematics Faculty, Polytechnic Superior School of the Littoral, Guayaquil, Ecuador
Received: Jul. 16, 2020;       Accepted: Aug. 10, 2020;       Published: Aug. 25, 2020
DOI: 10.11648/j.ijpc.20200604.12      View  61      Downloads  41
Abstract
Ecuador has among its foods a series of potatoes and tubers that are not only nutritious, but also contain properties such as adjuvants which aid in the treatment of diseases caused by an inflammatory state. However, there is a lack of scientific evidence to support these hypotheses. The objective of this study was to carry out a comparative study of two varieties of the mashua tuber (Tropaeolum tuberosum spp tuberosum (Ruíz & Pavón, Kuntze)), by analyzing the pharmacognostic, chemical and anti-inflammatory characteristics. Since there are no previous reports regarding the macro- and micromorphological characteristics of the tubers, the following analyses were conducted; the establishment of physical-chemical parameters, the qualitative determination of the secondary metabolites, the quantification of phenols as well as flavonoids and the characterization of the extracts of ethyl acetate, ethyl alcohol and the coupling of the system through gas chromatography-mass spectrometry. Significant differences were found in the macro- and micromorphology, as well as in the secondary metabolite between the two varieties studied. The black mashua showed a higher concentration quantification of phenols and flavonoids. Some phytosterols and triterpenoids were reported for the first time in these species and the anti-inflammatory activity of the tubers was demonstrated. These findings can lead to further research for a future use in a clinical trial.
Keywords
Anti-Inflammatory, Chemical Composition, Macro and Micromorphology
To cite this article
Jiménez-Heinert María Elena, Gutiérrez-Gaitén Yamilet Irene, Chóez-Guaranda Iván, Miranda-Martínez Migdalia, Pharmacognostic, Chemical and Anti-inflammatory Activity Study of Two Varieties of Tropaeolum tuberosum (Ruiz & Pav.) Kuntze (Tropaeolaceae), International Journal of Pharmacy and Chemistry. Vol. 6, No. 4, 2020, pp. 41-53. doi: 10.11648/j.ijpc.20200604.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Rosset, Peter. “Food Sovereignty: Global Rallying Cry of Farmer Movements.” Institute for Food and Development Policy Backgrounder. 2003; 9 (4): 1-4.
[2]
CIP. Centro Internacional de la Papa. Oca, ulluco y mashua. [International Potato Center. Oca, ulluco and mashua]. Lima, Perú. 2015. Aviable in: https://cipotato.org/es/raices-y-tuberculos/oca-ulluco-y-mashua/.
[3]
Aruquipa, R., Trigo, R., Bosque, H., Mercado, G., y Condori, J. El Isaño (Tropaeolum tuberosum) un cultivo de consumo y medicina tradicional en Huatacana para el beneficio de la población boliviana. [The Isaño (Tropaeolum tuberosum) a consumer crop and traditional medicine in Huatacana for the benefit of the Bolivian population]. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales. 2016; 3 (2): 146-151.
[4]
Rivera, F. Raíces y tubérculos con alto contenido energético y medicinal. [Roots and tubers with high energy and medicinal content]. Desafío. 2005. Aviable in: http://repositorio.educacionsuperior.gob.ec/bitstream/28000/675/1/T-SENESCYT-0127.pdf.
[5]
Chirinos, R.; Campos, D. Costa, N.; Arbizu, C.; Pedreschi, R.; Larondelle, Y. Phenolic profiles of andean mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers: Identification by HPLC-DAD and evaluation of their antioxidant activity. Food Chemistry. 2008a; 106: 1285-1298.
[6]
Villacres, E. Quelal, M. & Álvarez, J. Nutrición, Procesamiento y Gastronomía de Raíces y Tubérculos Andinos en Ecuador: Una Revisión Bibliografía de Papa, Melloco, Oca, Mashua, Zanahoria Blanca y Jícama. [Nutrition, Processing and Gastronomy of Andean Roots and Tubers in Ecuador: A Bibliography Review of Potato, Melloco, Oca, Mashua, White Carrot and Jicama]. 2013. Aviable in: http://repositorio.iniap.gob.ec/bitstream/41000/2816/1/iniapsc302.pdf.
[7]
Jiménez, H. M, Gutiérrez, GY, Chóez, GI, Miranda, MM. Chemical Study and Determination of the Antioxidant Activity of Three Varieties Tropaeolum tuberosum (Mashua). American Journal of Plant Sciences. 2019; 10: 2279-2297. https://doi.org/10.4236/ajps.2019.1012159.
[8]
Morillo, C. A. C. Morillo, C. Y. & Tovar L. Y. Molecular characterization of cubios (Tropaeolum tuberosum Ruíz and Pavón) in the department of Boyacá. Revista de Ciencias Agrícolas. 2016; 33 (2): 32-42. https://doi.org/10.22267/rcia.163302.50.
[9]
Gattuso MA, Gattuso SJ. Manual de procedimientos para el análisis de drogas en polvo. [Procedures manual for the analysis of powdered drugs]. Editorial de la Universidad Nacional de Rosario Urquiza. Argentina. 1999. ISBN 950-673-199-3.
[10]
Miranda, MM, Cuéllar, AC. Manual de prácticas de laboratorio. Farmacognosia y productos naturales. [Laboratory practice manual. Pharmacognosy and natural products]. 2000; 1-7, 18-32. Ciudad Habana.
[11]
WHO. World Health Organization. Quality control methods for medicinal plant materials. WHO/PHARM/92.559. Updated edition of Quality control methods for medicinal plant materials, 1998. ISBN 978 92 4 150073 9. Geneva. 2011.
[12]
Pourmorad F, Hosseinimerhr SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology. 2006; 5 (11): 1142-1145.
[13]
Memnune S, Hilal Y, Neva G, Bulent C, Zeynep E, Sezai E. Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pak. J. Pharm. Sci. 2009; 22 (1): 102-106.
[14]
Kale, A, Gaikwad, S, Mundhe, K, Deshpande, N, Salvekar, J. Quantification of phenolics and flavonoids by spectrophotometer from Juglans regia, Int. J. Pharma. Bio Scs. 2010; 1: 1-4.
[15]
Chlopicka J, Pasko P, Gorinstein S, Jedryas A, Zagrodzki P. (2012). Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT- Food Science and Technology. 2010; 46: 548-555.
[16]
Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis. 2002; 10 (3): 178-182.
[17]
Saitta M, Curto S, Lo Salvo F, Bella GDi, & Dugo G. Gas chromatographic-tandem mass spectrometric identification of phenolic compounds in Sicilian olive oils. Analytica Chimica Acta. 2002. https://doi.org/10.1016/S0003-2670(02)00572-X.
[18]
Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, et al. A Good Practice Guide to the Administration of Substances and Removal of Blood, Including Routes and Volumes. J. Appl. Toxicol. 2001; 21: 15-23.
[19]
Balamurugan K., Sakthidevi G, Mohan VR. Antiinflammatory activity of leaf of Melastoma malabathricum L. (Melastomataceae). International Journal of Research in Ayurveda and Pharmacy. 2012; 3 (6): 801-802.
[20]
The World Medical Association. Declaración de la AMM sobre el Uso de Animales en la Investigación Biomédica. [WMA Statement on the Use of Animals in Biomedical Research] [Internet]. 2016 [citado 2 de marzo de 2017]. Aviable in: https://www.wma.net/e;s/policies-post/declaracionde-la-amm-sobre-el-uso-de-animales-en-la-investigacionbiomedica/.
[21]
Esau K. Anatomía vegetal. [Plant anatomy]. Edición Revolucionaria. Cuba; 1972; 355-410.
[22]
Khandelwal, KR. Practical Pharmacognosy. Techniques and experiments. Twelveth edition. 2004; 138.
[23]
Lou Zhi-cen. General control methods for vegetable drugs. Comparative study of methods included in thirteen pharmacopoeias a proposal on their international unification. WHO/PHARM/80.502: 8-39. 1980.
[24]
Miranda MM, Cuéllar AC. Farmacognosia y productos naturales. [Pharmacognosy and natural products]. Editorial Félix Varela. Segunda edición, La Habana. 2012; 135-145, 261-280.
[25]
Commission CP. Pharmacopoeia of the People's Republic of China. Chinese Medical Science and Technology Press. Peking. 2015; 337.
[26]
Chirinos R, Campos D, Betalleluz I, Giusti MM, Schartz SJ, Tian Q, et al. High performance liquid chromatography with photodiode array detection (HPLC/DAD)/HPLC-Mass spectrometry 1070 (MS) profiling of anthocyanins from Andean Mashua tubers (Tropaeolum tuberosum Ruíz & Pavón) and their contribution to the overall antioxidant activity. J. Agr. Food Chem. 2006; 54: 7089-7097.
[27]
Tena Pé V, Luis Nestor AT. Ethnobotanical Uses, Secondary Metabolites and Biological Activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). Journal of Ethnopharmacology. 2019; 247, Article ID: 112152. https://doi.org/10.1016/j.jep.2019.112152.
[28]
Campos D, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros-Zevallos L. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), Mashua (Tropaeolum tuberosum Ruíz & Pavón), Oca (Oxalis tuberosa Molina) and Ulluco (Ullucus tuberosus Caldas). J. Sci. Food Agric. 2006; 86: 1481-1488.
[29]
Chirinos R, Campos D, Warnier M, Pedreschi R, Rees JF, Larondelle Y. Antioxidant properties of Mashua (Tropaeolum tuberosum) phenolic extracts against oxidative damage using biological in vitro assays. Food Chem. 2008b; 111: 98-105.
[30]
Chirinos R, Campos D, Arbizu C, Rees JF, Roez H, Larondelle Y. Effect of genotype, maturity stage and post- harvest storage on phenolic compounds, carotenoid content and antioxidant capacity of Andean Mashua tubers (Tropaeolum tuberosum Ruíz y Pavón). Journal of the Science of Food and Agriculture. 2007a; 87: 437-446.
[31]
Chirinos R, Rogez H, Campos D, Pedreschi R, Larondelle Y. Optimization of extraction conditions of antioxidant phenolic compounds from Mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Purif. Technol. 2007b; 55: 217-225.
[32]
Apaza TL, Tena PV, Serban AM, Alonso NMJ, Rumbero A. Alkamides from Tropaeolum tuberosum inhibit inflammatory response induced by TNF-α and NF-κB. J. Ethnopharmacol. 2019; 235: 199-205.
[33]
Moreno JJ, Mitjavila MT. The degree of unsaturation of dietary fatty acids and the development of atherosclerosis (review). J. Nutr Biochem. 2003; 14 (4): 182-195.
[34]
Harvey KA, Walker CL, et al. (2010a). "Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth." Clin Nutr 29 (4): 492-500.
[35]
Harvey KA, Walker CL, Xu Z, Whitley P, Pavlina TM, Hise M, et al. Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J Lipid Res. 2010; 51 (12): 3470-3480.
[36]
Harvey KA, Walker CL, Xu Z, Whitley P, Pavlina TM, Hise M, et al. Trans fatty acids: induction of a pro-inflammatory phenotype in endothelial cells. Lipids. 2012; 47 (7): 647-657.
[37]
Ramallo ZR. Análisis exploratorio de los ácidos grasos del isaño (Tropaeolum tuberosum). [Exploratory analysis of isaño fatty acids (Tropaeolum tuberosum)]. Rev. Investigación & Desarrollo. 2004; 4: 71-77.
[38]
Chasquibol-Silva N, Delmás-Robles DI., Rivera-Castilla D, Lengua-Calle RL, Aguirre-Medrano R, Bazán-Gutiérrez D, Becerra-Vásquez E, Bautista-Castro M. Contribución a la normalización de productos tradicionales andinos: Maca, Kiwicha, Cañihua, Mashua. [Contribution to the normalization of traditional Andean products: Maca, Kiwicha, Cañihua, Mashua]. Rev. Per. Quim. Ing. Quim. 1999; 2 (1): 9-21.
[39]
Almagro L, Miras-Moreno B, Sabater-Jara AB. Bioactivity of phytosterols and their production in plant in vitro cultures. J. Agric. Food. Chem. 2016; 38: 7049-7058.
[40]
Panda S, Jafri M, Kar A, Meheta BK. Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia. 2009; 80 (2): 123-126.
[41]
Khan MR, Mlungwana SM. γ-sitosterol, un esterol citotóxico de Markhamia zanzibarica y Kigelia africana.[ γ-sitosterol, a cytotoxic sterol from Markhamia zanzibarica and Kigelia africana]. Fitoterapia. 1999; 70 (1): 96-97.
[42]
Fernández C, Martín M, Gómez-Coronado D, Lasunción MA. Efecto de los fitosteroles sobre la biosíntesis de colesterol y la proliferación en células humanas. [Effect of phytosterols on cholesterol biosynthesis and proliferation in human cells]. Clínica e Investigación en Arteriosclerosis. 2003; 15 (5): 175-183.
[43]
Rangachari B, Veeramuthu D, Savarimuthu I. Antidiabetic activity of γ-sitosterol isolated from Lippia nodiflora L. in streptozotocin induced diabetic rats. European Journal of Pharmacology. 2011; 667 (1–3): 410-418.
[44]
Shenbagamoorthy S, Ramar T, Vellingiri S, Krishnasamy K, Palani G, Shanmugam A, Soundarapandian K. (2011). Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. European Journal of Pharmacology. 2011; 667 (1–3): 410-418.
[45]
Ferrís-Tortajada J, Berbel-Tornero O, García-Castell J, Ortega-García JA, López-Andreue JA. Dietetic Factors Associated with Prostate Cancer. Protective Effects of Mediterranean Diet. Actas Urológicas Españolas. 2012; 36 (4): 239-245.
[46]
Chittka L, Peng F. Neuroscience. Caffeine boosts bees' memories. Science.2013; 339 (6124): 1157-1159.
[47]
Gutiérrez GY, Miranda MM, Bello A, Hernández S, Montes de Oca PR. Chemical characterization using gas chromatography/mass spectrometry of two extracts from Phyllanthus orbicularis HBK. Revista Cubana de Farmacia. 2011; 45 (3): 405-413.
[48]
Woelkart K, Bauer R. The role of alkamides as an active principle of Echinacea. Planta Med. 2007; 7: 615-623.
[49]
Awad AB, Chen YC, Fink CS, Hennessey T. β-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. Anticancer Res. 1996; 16 (5a): 2797-2804.
[50]
Ivorra MD, D'Ocon MP, Paya M, Villar A. Antihyperglycemic and insulin-releasing effects of beta-sitosterol 3-beta-D-glucoside and its aglycone, beta-sitosterol. Archives Internationales de Pharmacodynamie et de Therapie. 1988; 296: 224-231.
[51]
Klippel KF, Hiltl DM, Schipp B. A multicentric, placebo-controlled, double-blind clinical trial of β-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. British Journal of Urology. 2003. https://doi.org/10.1046/j.1464-410X.1997.t01-1-00362.x.
[52]
Dolan MC, Jordan RA, Schulze TL, Schulze CJ, Manning MC, Ruffolo D, et al. Capacidad de dos productos naturales, nootkatone y carvacrol, para suprimir Ixodes scapularis y Amblyomma americanum (Acari: Ixodidae) en un área endémica de la enfermedad de Lyme de Nueva Jersey. [Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in an area endemic for Lyme disease in New Jersey. J Econ Entomol. 2009; 102 (6): 2316–24.
[53]
Fernández RGA, Cruzado LM, Bonilla RPE, Ramírez CFJM, Toche TA, Curay CVL. Identificación de metabolitos secundarios y efecto antiinflamatorio del extracto etanólico de hojas de Chromolaena leptocephala (DC) R. M. King & H. Rob. “chilca negra”. [Identification of secondary metabolites and anti-inflammatory effect of the ethanolic extract of leaves of Chromolaena leptocephala (DC) R. M. King & H. Rob. “Black chilca”. Revista Peruana de Medicina Integrativa. 2017; 2 (3): 779-84.
[54]
Dirosa M, Giround J. Studies of the mediators of acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J. Pathol. 1971; 15-29.
Browse journals by subject