International Journal of Pharmacy and Chemistry

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Phytochemical Analysis and Bioactivities Studies of Fresh Leaves and Flowers from C. roseus, L. multiflora and P. amarus, Beninese Medicinal Plants Used Against Diabetes

Traditional herbal medicines make up a large part of drug use. This work addressed an area of public health, the fight against diabetes. The present study aimed to carry out qualitative and quantitative screening of the secondary metabolites of extracts from the leaves and flowers of plants such as Catharanthus roseus, Lippia multiflora and Phyllanthus amarus, and to evaluate the antioxidant activity in their aqueous and ethanolic extracts, their larval toxicity and then to predict the antidiabetic activity. The results showed that its plants have in their various extracts some secondary metabolites such as alkaloids, tannins, flavonoids, coumarins, terpenoids, phenolic compounds, steroids, etc responsible for several interesting pharmaceutical activities. These medicinal plants showed a higher quantity of polyphenols in the hydro-ethanolic extracts, with levels of 60.65±0.13; 44.40±1.43 and 67.11±0.39 mg.eq/g respectively for C. roseus, L. multiflora and P. amarus and also a higher antioxidant potential for L. multiflora and P. amarus than the standard Vitamin C, with IC50 equal to 0.53 and 0.52 mg/mL respectively. Extracts are not toxic against larvae. These results are an important indicator of the hypoglycemic and anti-diabetic activity and confirmed the potential for use of these plants by the population in the fight against diabetes.

Phytochemical Analysis, Anti-Diabetic, Antioxidant Potential, Hydro-Ethanolic Extracts

Simplice Koudjina, Alban Gouton Houngbeme, Israël Dossou Paulin Agbogba, Guy Yacolé Sylvain Atohoun, Joachim Djimon Gbenou. (2023). Phytochemical Analysis and Bioactivities Studies of Fresh Leaves and Flowers from C. roseus, L. multiflora and P. amarus, Beninese Medicinal Plants Used Against Diabetes. International Journal of Pharmacy and Chemistry, 9(5), 56-66.

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Prabhakar P. K. & Doble M. (2011). Mechanism of action of natural products used in the treatment of diabetes mellitus. Chinese Journal of Integrative Medicine. 17 (8): 563–574. doi: 10.1007/s11655-011-0810-3.
2. Padhi S., Nayak A. K. & Behera A. (2020). Type II diabetes mellitus: a review on recent drug based therapeutics. Biomedicine & Pharmacotherapy. 131: 110708. doi: 10.1016/j.biopha.2020.110708.
3. Kesari A. N., Kesari S., Singh S. K., Gupta R. K. & Watal G. (2007) Studies on the glycemic and lipidemic effect of Murraya koenigii in experimental animals. Journal of Ethnopharmacology, 112 (2): 305–311. doi: 10.1016/j.jep.2007.03.023.
4. Cho N. H., Shaw J. E., Karuranga S., Huang Y., da Rocha Fernandes J. D., Ohlrogge A. W. & Malanda B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. 138: 271–281. doi: 10.1016/j.diabres.2018.02.023.
5. Grover J. K., Yadav S. & Vats V. (2002). Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology. 81 (1): 81–100. doi: 10.1016/s0378-8741(02)00059-4.
6. Luciano-Feijoó M., Cabañas J. G. & Brice J. H. (2021). Diabetic emergencies. Emergency Medical Services: Clinical Pratice and Systems Oversight. (1): 188–193. doi: 10.1002/9781119756279.ch20.
7. Gambhire M. S., Gambhire V. M., Kulkarni A., Dolas R., Mulay A. & Bhide M. (2023). Design, Optimization and Characterization of Metformin Hydrochloride Loaded Biodegradable Microspheres using Box Behnken design for Local Delivery in Periodontitis. Int. J. Pharm. Sci. Drug. Res. 15 (3): 301-316. doi: 10.25004/IJPSDR.2023.150311.
8. Gomes A., Coelho P., Soares R. & Costa R. (2021). Human umbilical cord mesenchymal stem cells in type 2 diabetes mellitus: the emerging therapeutic approach. Cell and Tissue Research. 385: 497-518. doi: 10.1007/s00441-021-03461-4.
9. Fah L., Klotoé J. R., Dougnon V., Koudokpon H., Fanou V. B. A., Dandjesso C. & Loko F. (2013). An ethnobotanical study of plants used in the treatment of diabetes in pregnant women in Cotonou and Abomey-Calavi. Journal of Animal & Plant Sciences. 18 (1): 2647-2658.
10. Osadebe P. O., Odoh U. E. & Uzor P. (2014). Natural products as potential sources of antidiabetic drugs. British Journal of Pharmaceutical Research, 4 (17): 2075-2095. doi: 10.9734/BJPR/2014/8382.
11. Michala A-S. & Pritsa A. (2022). Quercetin: A Molecule of Great Biochemical and Clinical Value and Its Beneficial Effect on Diabetes and Cancer. Diseases. 10 (3): 37. doi: 10.3390/diseases10030037.
12. Andrade C., Gomes N. G. M., Duangsrisai S., Andrade P. B., Pereira D. M. & Valentão P. (2020). Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. J Ethnopharmacol. 5; 263: 113177. doi: 10.1016/j.jep.2020.113177.
13. Thomas S. & Madhumitha G. (2022). Anti-diabetic Activity of Buchanania lanceolata Wight Extracts in Streptozocin persuades Diabetic Animal Model. Biointerface Research in Apllied Chemistry. 12 (5): 6741-6752. doi: 10.33263/BRIAC25.67416752.
14. Chandrasekhar M., Syam Prasad G., Venkataramaiah C., Umapriya K., Raju C. N., Seshaiah K. & Rajendra W. (2020). In silico and in vitro antioxidant and anticancer activity profiles of urea and thiourea derivatives of 2,3-dihydro-1H-inden-1-amine. J Recept Signal Transduct Res, 40 (1): 34–41. doi: 10.1080/10799893.2019.1710848.
15. Kotaiah Y., Harikrishna N., Nagaraju K. & Venkata Rao C. (2012). Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno [2,3-d]pyrimidine derivatives. European Journal of Medicinal Chemistry. 58: 340–345. doi: j.ejmech.2012.10.007.
16. Kadali V. N., Pola S. R., Ramesh T. & Sandeep B. V. (2016). Anti-diabetic plants present in West Godavari district of Andhra Pradesh India- A short review. International Journal of Pharma Sciences and Research. 7 (2): 72-76.
17. Biswajit S. & Bhabesh C. G. (2018). Evaluation of Hypoglycemic effect of Ethanol extract of Musa paradisiaca unripe fruit pulp on normal and alloxan induced diabetic mice. Research J. Pharm. and Tech. 11 (3): 1048-1052. doi: 10.5958/0974-360X.2018.00196.8.
18. Nwonu C., Ilesanmi O., Agbedahunsi J. & Nwonu P. (2019). Natural products as veritable source of noveldrugs and medicines: A review. International Journal of Herbal Medicine. 7 (1): 50-54.
19. Biswajit S. (2021). Phytochemical analysis of few selected medicinal plants used for the treatment of diabetes in Assam, India. Research Journal of Chemical Sciences. 11 (1): 34-41.
20. Cheng H. T., Xu X., Lim P. S. & Hung K. Y. (2021). Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diabetes Care. 44 (1): 89–97. doi: 10.2337/dc20-1913.
21. Kong L. Y. & Tan R. X. (2015). Artemisinin, a miracle of traditional Chinese medicine. Natural Product Reports. 32 (12): 1617–1621. doi: 10.1039/c5np00133a.
22. Houngbeme A. G., Ganfon H. M. Y., Medegan S., Yehouenou B., Bambola B., Gandonou C. & Gbaguidi F. A. (2015). Antimicrobial activity of compounds from Acanthospermum hispidum DC and Caesalpinia bonduc (L.) ROXB: Beninese plants used by healers against HIV-associated microbial infections. Journal of Applied Pharmaceutical Science. 5 (08): 073-081. doi: 10.7324/JAPS.2015.50812.
23. Harborne J. B. (1998). Textbook of Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis. 5th Edition, Chapman and Hall Ltd, London, 21-72.
24. Fatoumata K. M., Moussa S., Housseini D., Ilo D., Abdoul F. D., Modibo K., Lamine D., Oumar D., Issa G., Mahamadou T., Ousmane F., Seydou D. & Yaya I. C. (2022). Knowledge and factors influencing schistosomiasis control interventions in the hyperendemic health district of Kalabancoro in Mali, 2020. Pan Afr Med J. 43 (48): 30512. doi: 10.11604/pamj.2022.43.48.30512.
25. Kim E. J., Ahn B. K. & Kang C. W. (2003). Evaluation of the nutritive value of local defatted rice bran and effects of its dietary supplementation on the performance of broiler chicks. J. Anim. Sci. Technol. 45 (5): 759-766. doi: 10.5187/JAST.2003.45.5.759.
26. Kaur C. & Kapoor H. (2002). Anti-Oxidant Activity and Total Phenolic Content of Some Asian Vegetables. International Journal of Food Science and Technology. 37: 153-161. doi: 10.1046/j.1365-2621.2002.00552.x.
27. Durand D-N., Hubert A-S., Nafan D., Haziz S., Adolphe A., Mariam I., Donald A., Joachim D. G., Simeon O. K., Mamoudou H. D. & Lamine, B-M. (2015). Phytochemical Analysis and Biological Activities of Cola nitida Bark. Biochem. Res. Int. 493879. doi: 10.1155/2015/493879.
28. Heimler D., Vignolini P., Dini M. G., Vincieri F. F. & Romani A. (2006). Antiradical activity and polyphenol composition of local Brassicaceae edible varieties. Food Chemistry. 99 (3): 464–469. doi: 10.1016/j.foodchem.2005.07.
29. Lamien-Meda A., Lamien C. E., Compaoré M. M. Y., Meda R. N. T., Kiendrebeogo M., Zeba B., Millogo J. F. & Nacoulma O. G. (2008). Polyphenol Content and Antioxidant Activity of Fourteen Wild Edible Fruits from Burkina Faso. Molecules. 13 (3): 581–594. doi: 10.3390/molecules13030581.
30. Gandonou C. D., Tokoudagba J-M., Houngbeme A. G., Chodaton M. D. & Ahissou H. (2018). Antiradical activity and determination of phenolic compounds of extracts of Lippia multiflora (Verbenaceae): a plant traditionally used against arterial hypertension in Benin. International Journal of Current Research. 10 (10): 74039-74043. doi: 10.24941/ijcr.32498.10.2018.
31. Oyedeji S. I., Bassi P. U., Oyedeji S. A., Ojurongbe O. & Awobode H. O. (2020). Genetic diversity and complexity of Plasmodium falciparum infections in the microenvironment among siblings of the same household in North-Central Nigeria. Malar J. 19: 338. doi: 10.1186/s12936-020-03415-1.
32. Jean de Dieu M. M., Félicien M. K. & Justin K. N. (2014). Contribution à l’étude phytochimique de quelquesplantes médicinales antidiabétiques de la ville de Bukavu et ses environs (Sud-Kivu, R. D. Congo). J. Appl. Biosci. 75: 6211-6220. doi: 10.4314/jab.v75i1.7.
33. Paquette D., Bigras M. & Parent S. (2001). La validation du QSA et la prévalence des styles d'attachement adulte dans un échantillon francophone de Montréal [Validation of the ASQ and the prevalence of the styles of adult attachment in a French-speaking sample of Montreal]. Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement. 33 (2): 88–96. doi: 10.1037/h0087131.
34. Becke A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98 (7): 5648–5652. doi: 10.1063/1.464913.
35. Lee C., Yang W. & Parr R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37 (2): 785–789. doi: 10.1103/PhysRevB.37.785.
36. Frisch M. J., Pople J. A. & Binkley J. S. (1984). Self-Consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80 (7): 3265–3269. doi: 10.1063/1.447079.
37. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., et al. (2016). Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT.
38. Dennington R., Keith T. & Millam J. (2019). GaussView, Version 6.0.16, Semichem Inc., Shawnee Mission, KS.
39. Farhadi F., Khameneh B., Iranshahi M. & Iranshahy M. (2019). Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytotherapy Research. 33: 13–40. doi: 10.1002/ptr.6208.
40. Gnintoungbe G., Medehouenou T., Adounkpe F., Akpovi C. & Loko F. (2023). Phytochemical Screening, Antioxidant Activity and Safety of Petroselinum crispum (Mill.) AW Hill Apiaceae Leaves Grown in Benin. Open Journal of Applied Sciences. 13: 36-50. doi: 10.4236/ojapps.2023.131004.
41. Bortolomeazzi R., Sebastianutto N., Toniolo R. & Pizzariello A. (2007). “Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential.” Food Chemistry. 100 (4): 1481–1489. doi: 10.1016/j.foodchem.2005.11.039.
42. Barrachina L., Cequier A., Romero A., Vitoria A., Zaragoza P., Vazquez F. J. & Rodellar C. (2020). Allo-antibody production after intraarticular administration of mesenchymal stem cells (MSCs) in an equine osteoarthritis model: effect of repeated administration, MSC inflammatory stimulation, and equine leukocyte antigen (ELA) compatibility. Stem Cell Res Ther. 11 (1): 52. doi: 10.1186/s13287-020-1571-8.
43. Kamgaing M. T. W., Mvondo M. A., Kamani S. L. P., Essono S. M. & Ngnokam S. L. W. (2020). The Aqueous Extract of Dacryodes edulis (Burseraceae) Leaves Inhibits Cell Proliferation Induced by Estradiol on the Uterus and Vagina of Ovariectomized Female Wistar Rats. Adv Pharmacol Pharm Sci. (20): 8869281. doi: 10.1155/2020/8869281.
44. Patel A., McKnight J. N., Genzor P. & Bowman G. D. (2011). Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J Biol Chem. 286 (51): 43984-43993. doi: 10.1074/jbc.M111.282970.